Corona Ring

Doxm...HBHZ
13 Apr 2024
48

A corona ring, more correctly referred to as an anti-corona ring, is a toroid of conductive material, usually metal, which is attached to a terminal or other irregular hardware piece of high voltage equipment. The purpose of the corona ring is to distribute the electric field gradient and lower its maximum values below the corona threshold, preventing corona discharge. Corona rings are used on very high voltage power transmission insulators and switchgear, and on scientific research apparatus that generates high voltages. A very similar related device, the grading ring, is used around insulators.

Corona discharge


Corona discharge is a leakage of electric current into the air adjacent to high voltage conductors. It is sometimes visible as a dim blue glow in the air next to sharp points on high voltage equipment. The high electric field ionizes the air, making it conductive, allowing current to leak from the conductor into the air in the form of ions. In very high voltage electric power transmission lines and equipment, corona results in an economically significant waste of power and may deteriorate the hardware from its original state. In devices such as electrostatic generators, Marx generators, and tube-type television sets, the current load caused by corona leakage can reduce the voltage produced by the device, causing it to malfunction. Coronas also produce noxious and corrosive ozone gas, which can cause aging and brittleness of nearby structures such as insulators. The gasses create a health hazard for workers and local residents. For these reasons corona discharge is considered undesirable in most electrical equipment.

How they work


Corona discharges only occur when the electric field (potential gradient) at the surface of conductors exceeds a critical value, the dielectric strength or disruptive potential gradient of air. It is roughly 30 kV/cm at sea level but decreases when atmospheric pressure decreases. Therefore, corona discharge is more of a problem at high altitudes. The electric field at the surface of a conductor is greatest where the curvature is sharpest, so corona discharge occurs first at sharp points, corners and edges.

The terminals on very high voltage equipment are frequently designed with large diameter rounded shapes such as balls and toruses called corona caps, to suppress corona formation. Some parts of high voltage circuits have hardware with exposed sharp edges or corners, such as the attachment points where wires or bus bars are connected to insulators; corona caps and rings are usually installed at these points to prevent corona formation.

The corona ring is electrically connected to the high voltage conductor, encircling the points where corona would form. Since the ring is at the same potential as the conductor, the presence of the ring reduces the potential gradient at the surface of the conductor below the disruptive potential gradient, preventing corona from forming on the metal points.

Grading rings


A very similar related device, called a grading ring, is also used on high-voltage equipment. Grading rings are similar to corona rings, but they encircle insulators rather than conductors. Although they may also serve to suppress corona, their main purpose is to reduce the potential gradient along the insulator, preventing premature electrical breakdown.

The potential gradient (electric field) across an insulator is not uniform but is highest at the end next to the high voltage electrode. If subjected to a high enough voltage, the insulator will break down and become conductive at that end first. Once a section of the insulator at the end has electrically broken down and become conductive, the full voltage is applied across the remaining length, so the breakdown will quickly progress from the high voltage end to the other, and a flashover arc will start. Therefore, insulators can stand significantly higher voltages if the potential gradient at the high voltage end is reduced.

The grading ring surrounds the end of the insulator next to the high voltage conductor. It reduces the gradient at the end, resulting in a more even voltage gradient along the insulator, allowing a shorter, cheaper insulator to be used for a given voltage. Grading rings also reduce aging and deterioration of the insulator that can occur at the high voltage end due to the high electric field there.

In very high voltage apparatus like Marx generators and particle accelerator tubes, insulating columns often have many metal grading rings spaced evenly along their length. These are linked by a voltage divider chain of high-value resistors so there is an equal voltage drop from each ring to the next. This divides the potential difference evenly along the length of the column so there are no high field spots, resulting in the least stress on the insulators.

Uses


Corona rings are used on extremely high voltage apparatus like Van de Graaff generators, Cockcroft–Walton generators, and particle accelerators, as well as electric power transmission insulators, bushings, and switchgear. Manufacturers suggest a corona ring on the line end of the insulator for transmission lines above 230 kV and on both ends for potentials above 500 kV. Corona rings prolong the lifetime of insulator surfaces by suppressing the effects of corona discharge.[1]

Corona rings may also be installed on the insulators of antennas of high-power radio transmitters.[2] However, they increase the capacitance of the insulators.

Arcing horns


Arcing horns (sometimes arc-horns) are projecting conductors used to protect insulators or switch hardware on high voltage electric power transmission systems from damage during flashover. Overvoltages on transmission lines, due to atmospheric electricity, lightning strikes, or electrical faults, can cause arcs across insulators (flashovers) that can damage them. Alternately, atmospheric conditions or transients that occur during switching can cause an arc to form in the breaking path of a switch during its operation. Arcing horns provide a path for flashover to occur that bypasses the surface of the protected device.[1] Horns are normally paired on either side of an insulator, one connected to the high voltage part and the other to ground, or at the breaking point of a switch contact. They are frequently to be seen on insulator strings on overhead lines, or protecting transformer bushings.

The horns can take various forms, such as simple cylindrical rods, circular guard rings, or contoured curves, sometimes known as 'stirrups'.

Background


High voltage equipment, particularly that which is installed outside, such as overhead power lines, is commonly subject to transient overvoltages, which may be caused by phenomena such as lightning strikes, faults on other equipment, or switching surges during circuit re-energisation.[2] Overvoltage events such as these are unpredictable, and in general cannot be completely prevented. Line terminations, at which a transmission line connects to a busbar or transformer bushing, are at greatest risk to overvoltage due to the change in characteristic impedance at this point.[3]

An electrical insulator serves to provide physical separation of conducting parts, and under normal operating conditions is continuously subject to a high electric field which occupies the air surrounding the equipment. Overvoltage events may cause the electric field to exceed the dielectric strength of air and result in the formation of an arc between the conducting parts and over the surface of the insulator.[1] This is called flashover. Contamination of the surface of the insulator reduces the breakdown strength and increases the tendency to flash over. On an electrical transmission system, protective relays are expected to detect the formation of the arc and automatically open circuit breakers to discharge the circuit and extinguish the arc. Under a worst case, this process may take as long as several seconds, during which time the insulator surface would be in close contact with the highly energetic plasma of the arc. This is very damaging to an insulator, and may shatter brittle glass or ceramic disks, resulting in its complete failure.

Operation

Arcing horns form a spark gap across the insulator with a lower breakdown voltage than the air path along the insulator surface, so an overvoltage will cause the air to break down and the arc to form between the arcing horns, diverting it away from the surface of the insulator.[3] An arc between the horns is more tolerable for the equipment, providing more time for the fault to be detected and the arc to be safely cleared by remote circuit breakers. The geometry of some designs encourages the arc to migrate away from the insulator, driven by rising currents as it heats the surrounding air. As it does so, the path length increases, cooling the arc, reducing the electric field and causing the arc to extinguish itself when it can no longer span the gap. Other designs can utilise the magnetic field produced by the high current to drive the arc away from the insulator.[4] This type of arrangement can be known as a magnetic blowout.

Switch protection



Arcing horns are sometimes installed on air-insulated switchgear and transformers to protect the switch arm from arc damage. When a high voltage switch breaks a circuit, an arc can establish itself between the switch contacts before the current can be interrupted. The horns are designed to endure the arc rather than the contact surfaces of the switch itself

Corona and grading rings



Arcing horns are not to be confused with corona rings (or the similar grading rings) which are ring-shaped assemblies surrounding connectors, or other irregular hardware pieces on high potential equipment. Corona rings and grading rings are intended to equalize and redistribute accumulated potential away from components that might be subject to local accumulation and destructive discharges, although sometimes either device may be installed in close proximity to an arcing horn assembly.










Write & Read to Earn with BULB

Learn More

Enjoy this blog? Subscribe to Mrmti2

0 Comments

B
No comments yet.
Most relevant comments are displayed, so some may have been filtered out.